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Abstract
For fixed subgroups Fix(ϕ) of automorphisms ϕ on hyperbolic 3-manifold groups

π1(M), we observed that rk(Fix(ϕ)) < 2rk(π1(M)) and the constant 2 in the inequality
is sharp, we also classify all possible groups Fix(ϕ).
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1 Background and Main Theorem

For a group G and an automorphism ϕ : G → G, we define Fix(ϕ) = {ω ∈
G|ϕ(ω) = ω}, and use rk(G) to denote the rank of G.
The so called Scott conjecture proved 20 years ago in a celebrate work of M.

Bestvina and M. Handel [BH] states that:

Theorem 1.1. For each automorphism ϕ on a free group G = Fn,

rk(Fix(ϕ)) ≤ rk(G).

In a recent paper by B.J. Jiang, S. D. Wang and Q. Zhang [JWZ], it is
proved that

Theorem 1.2. For each automorphisms ϕ on a compact surface group
G = π1(S),

rk(Fix(ϕ)) ≤ rk(G).

It is obvious that the bound given in Theorem 1.1 and Theorem 1.2 are
sharp.
It is natural to wonder to what degree such an inequality still hold for groups

with good geometric background.
A main observation in this paper is the following
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Theorem 1.3. For each automorphism ϕ on a hyperbolic 3-manifold
group G = π1(M),

rk(Fix(ϕ)) < 2rk(G),

and the upper bound is sharp when G runs over all hyperbolic 3-manifold
groups.

Theorem 1.3 is a conclusion of the following Theorems 1.4, and 1.5.

Theorem 1.4. There exist a sequences automorphisms ϕn : π1(Mn) →
π1(Mn) on closed hyperbolic 3-manifolds Mn such that Fix(ϕn) is the
group of a closed surface, and

rk(Fix(ϕn))

rk(π1(Mn))
> 2− ϵ as n → ∞

for any ϵ > 0.

Theorem 1.5. Suppose ϕ is an automorphism on G = π1(M), where M
is a hyperbolic 3-manifold. Then rk(Fix(ϕ)) < 2rk(G).

To prove Theorem 1.5, we need the following Theorem 1.6

Theorem 1.6. Suppose G = π1(M), where M is a hyperbolic 3-manifold,
and ϕ is a automorphism of G. Then Fix(ϕ) is one of the following types:

3



the whole group G; the trivial group {e}; Z; Z
⊕

Z; the surfaces group
π1(S), where S can be orientable or not, and closed or not. More precisely

(1) Suppose ϕ is induced by an orientation preserving isometry.

(i) Fix(ϕ) is either Z, or Z
⊕

Z, or G, or {e}; moreover

(ii) if M is closed, then Fix(ϕ) is either Z or G;

(2) Suppose ϕ is induced by an orientation reversing isometry f .

(i) If ϕ2 ̸= id, then Fix(ϕ) is either Z or {e};
(ii) if ϕ2 = id, then Fix(ϕ) is either {e}, or the surface group π1(S), which

is pointwisely fixed by f .
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2 Construction of Examples 1.4

Roughly speaking those examples are constructed as follow: we first construct
a hyperbolic 3-manifold P with totally geodesic boundary. Then we double it
to get a closed hyperbolic 3 manifold DP . Now if we choose the base point on
the boundary of P , the reflection along ∂P will induce ϕ on the fundamental
group of DP , and this automorphism ϕ will have the property we desired.
In Thurston’s Lecture Notes (Section 3.2 of [Th1]), there is a very concrete

and beautiful construction of hyperbolic 3-manifolds with totally geodesic
boundaries involving primary hyperbolic geometry only.
In 3-dimensional hyperbolic space H3, there is a one-parameter family of

truncated hyperbolic tetrahedron as in Figure 1: Each of its 8 faces is totally
geodesic; each of its 18 edges is geodesic line segment. There are 4 triangle
faces and 4 hexagon faces. The 12 edges of the 4 triangle faces have the
same length, and the remain 6 edges, we call them ”inner edge”, also have
the same length. The triangle faces are perpendicular to the hexagon faces.
The angles between hexagon faces are all equal and can be arbitrary angles
between (0◦, 60◦).
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Figure 1

Suppose we have some copies of tetrahedron. We pair the faces of tetrahe-
dron and gluing them together.After gluing, if we remove a neighborhood of
the vertex, we will get a topological manifold P . A tetrahedron with its ver-
tex neighborhood removed is homeomorphic to the truncated simplex mention
above. Suppose every k edges of the tetrahedron are glued together(k > 6).
We can set the face angle α of the truncated simplex to be 2π

k . Then the hy-
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perbolic structure of the truncated simplex fix together to give the hyperbolic
structure of P , and the triangle faces of the truncated simplex are matched
together to form the totally geodesic ∂P .
It is easy to see that the number of vertex of tetrahedron (after gluing)

equals the number of the boundary component.

Moreover, if we remove the neighborhood of the inner edges in P . We will
get a handlebodyH . To see this, we remove the neighborhood of the 6 edges of
a tetrahedron. Topologically, it is homeomorphic to D3 and the 4 tetrahedron
faces are 4 disjoint disks on∂D3. Then, we glue them together. If we glue
some 3 balls alone disks on their boundary, we get a handlebody. So P can
be obtained by attaching m two handles on a handlebody of genus n + 1. It
is easy to see that m is the number of inner edges after gluing and n is the
number of tetrahedron.
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Now we double P its boundary to get a closed hyperbolic manifold DP . We
have to control the rank of π1(DP ). This is done in the following lemma.

Lemma 2.1. Suppose P is obtained by attaching l-handles to a handle-
body of genus k. Then rk(π1(DP )) ≤ k + l(DP is the double of P ).

basepoint

new generaters

Figure 2

8



Now we can construct our examples. We start from n (n > 3, 3 ∤ n)copies
of the tetrahedron indicated in Figure 3, where the edges are marked. We
represent the faces by the edges around it. Each tetrahedron Ti has 4 faces
(1, 3, 2)i, (4, 5, 3)i, (2, 6, 4)i, (5, 1, 6)i. Then we group the 4n faces into 2n
pairs:

[(1, 3, 2)i, (4, 5, 3)i+1]; [(2, 6, 4)i, (5, 1, 6)i+1], i = 1, 2, ...., n, and n+ 1 ≡ 1.

The two faces in each pair are glued together respecting the order of vertex.
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Figure 3

We can check that there are only one vertex and two edges after gluing. We
denote the manifold by M . We double it to get DM ..
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Lemma 2.2. In the construction above, Fix(ϕ) = Im(i∗(π1(∂M))).

By Lemma 2.1, rk(π1DM) ≤ n+ 3. Since ∂P has genus n− 1, by Lemma
2.2 Fix(ϕ) = Im(i∗(π1(∂M))) ∼= π1(∂M)) has rank 2n−2. For each n > 2,
construct such pair (DM,ϕ), and denoted as (Mn, ϕn). Then

rk(Fix(ϕn))

rk(π1(Mn))
≥ 2n− 2

n + 3
> 2− ϵ, as n → ∞

for any ϵ > 0. Hence we finished the proof of Theorem 1.4. □✓

The construction in Theorem 1.4 for closed hyperbolic 3-manifold can be
modified to the case of hyperbolic 3-manifold with cusps.

3 Sketch Proof of Theorem 1.6

The most important tool is the following algebraic version of Mostow rigidity
theorem. :

Theorem 3.1.Let Γ1 and Γ2 be two cofinite volume klein groups. And ϕ :
Γ1 → Γ2 is a isomorphism between them. Then there exist γ ∈ Iso(H3)
(γ may be orientation reversing) such that for any α ∈ Γ1, ϕ(α) = γαγ−1.
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Now let’s prove Theorem 1.6.

Proof. :
Fix(ϕ) = {α ∈ G | αγ = γα}. (3.1)

Because γGγ−1 = G, γ induces an isometry f ofM , such that the following
diagram commutes.
Case (1) γ is orientation preserving.
two nontrivial elements α, β in Iso+(H3) commute if and only if in the

following cases:
(a) Both α and β are parabolic elements and they share the same fixed point

in the infinite sphere S∞;
(b) Both α and β are non-parabolic elements (elliptic or hyperbolic) and

they share the same axis.
In both cases, if α, β, γ are all nontrivial, α commutes with β, β commutes

with γ, then α commute with γ.
So Fix(ϕ) is a torsion free abelian group.
Case (2) γ is orientation reversing. Note Fix(ϕ) ⊆ Fix(ϕ2) and ϕ2 is

induced by an orientation preserving map. □✓
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4 Sketch Proof of Theorem 1.5

Proposition 4.1. Suppose M is a hyperbolic 3-manifold and S proper
embedded surface in M . If there is an orientation reversing isometry f
of order 2 on M fixing S pointwisly. Then

rk(π1(S)) < 2rk(π1(M)).

Roughly speaking, it is a corollary of the following ”Half die half alive
lemma”

Lemma 4.2. Suppose M is a compact orientable 3-manifold. Then

dim{image i∗ : H1(∂M,Q) → H1(M,Q)} =
dimH1(∂M,Q)

2
where i∗ is induced by the inclusion i : ∂M → M .

In order to prove the strict inequality, we need the following lemma and past
to a finite covering space.

Lemma 4.3. (D.Cooper,D.Long,A.Reid) Suppose M is a compact ori-
entable 3-manifold which is not an I-bundle over surface, and S is an
incompressible boundary component of M . Then there is a finite covering
p : M̃ → M such the p−1(S) contains more then one component.
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