On the *n*-shake genus of a knot

Tetsuya Abe (RIMS)

The 8th East Asian School of
Knots and Related Topics
2012/1/11 in KAIST, Daejeon, Korea

Today's contents

- 1. The 4-ball genus and n-shake genus
- 2. On the *n*-shake genus $(n \neq 0)$
- 3. On the 0-shake genus

1. The 4-ball genus and n-shake genus

The 4-ball genus of a knot

K: a knot in $S^3 = \partial D^4$

The 4-ball genus and a slice knot

$$g_*(K) := \min\{g(F)|F \subset D^4, \partial F = K.\}$$

A knot K is slice iff $g_*(K) = 0$.

The n-shake genus of a knot

K: a knot in $S^3 = \partial D^4$

 $X_K(n)$: $D^4 \cup (a 2-handle)$

(The attaching sphere is K with framing n)

The *n*-shake genus -

$$g_n^s(K) := \min\{g(S)|[S] \text{ generates } H_2(X_K(n)) \simeq \mathbb{Z}. \}$$

Remark

$$g_n^s(K) \leq g_*(K).$$

If K is slice, then $g_n^s(K) = 0$.

2. On the *n*-shake genus $(n \neq 0)$

In 1977, Akbulut showed that $g_1^s(K_1) < g_*(K_1)$.

In 2010, Omae showed $g_n^s(K_n) < g_*(K_n) \ (n \neq 0)$.

Main result

Theorem[A.].

If $n \neq 0$ and $0 \leq m$,

$$g_n^s(K_n(m)) = 0, \quad g_*(K_n(m)) = 1.$$

Corollary[A.].

For each integer $n \neq 0$,

there exists ∞ -many knots K with $g_n^s(K) < g_*(K)$.

Proof of Theorem

• $g_*(K_n(m)) \le 1$ (Band surgery)

• $g_*(K_n(m)) \neq 0$ (Calculation of the Alexander poly.)

• $g_n^s(K_n(m)) = 0$ (Kirby calculus)

$$K_n(m)$$

Proof of Theorem (Step 1)

• This implies that $g_*(K_n(m)) \leq 1$.

Proof of Theorem (Step 2)

 $\Delta_K(t)$: The Conway-Alexaneder polynomial of K

Theorem[Fox-Milnor, Terasaka].

If K is slice, then $\Delta_K(t) = \exists F(t)F(t^{-1})$. Moreover, the 0-th coefficient of $\Delta_K(t)$ is positive.

Proof.

$$\Delta_K(t) = a_0 + a_1(t + \frac{1}{t}) + a_2(t^2 + \frac{1}{t^2}) + \cdots$$

$$= F(t)F(t^{-1})$$

$$= \sum_{i \ge 0} b_i t^i \sum_{i \ge 0} b_i t^{-i}$$

$$= \sum_{i \ge 0} b_i^2 + a_1(t + \frac{1}{t}) + a_2(t^2 + \frac{1}{t^2}) + \cdots$$

Lemma[A.].

Suppose that n > 0. Then

$$\Delta_{K_n(m)}(t) = \frac{-(1+6m)}{-(1+6m)} + (2+4m)(t+\frac{1}{t})$$

$$-(1+m)(t^2+\frac{1}{t^2}) - (1+3m)(t^{n-1}+\frac{1}{t^{n-1}})$$

$$+(2+3m)(t^n+\frac{1}{t^n}) - (1+m)(t^{n+1}+\frac{1}{t^{n+1}}).$$

$$\Delta_{K-n(m)}(t) = \frac{-(1+6m)}{-(1+6m)} + (2+4m)(t+\frac{1}{t})$$

$$-(1+m)(t^2+\frac{1}{t^2}) - (1+m)(t^{n-1}+\frac{1}{t^{n-1}})$$

$$+(2+3m)(t^n+\frac{1}{t^n}) - (1+3m)(t^{n+1}+\frac{1}{t^{n+1}})$$

$$+m(t^{n+2}+\frac{1}{t^{n+2}}).$$

• $K_n(m)$ is not slice, therefore, $g_*(K_n(m)) = 1$.

Kirby calculus

Any 4-mfd is represented by a Kirby diagram, which are links in \mathbb{R}^3 with integers or dots.

The following moves preserve the diffeo type:

- isotopies of the links
- handle slides (which preserve the number of links)
- handle creation / cancellation

Proof of Theorem (Step 3)

Lemma[A.].

 $X_{K_n(m)}(n)$ and $X_{R(m)}(n)$ are diffeomorphic.

Corollary[A.].
$$g_n^s(K_n(m)) = 0$$

Proof. Since R(m) is ribbon, $g_n^s(R(m)) = 0$.

Since $X_{K_n(m)}(n)$ and $X_{R(m)}(n)$ are diffeomorphic,

$$g_n^s(K_n(m)) = g_n^s(R(m)).$$

3. On the 0-shake genus

Kirby's problem 1.41 (Akbulut)

$$g_0^s(K) = g_*(K).$$

Fact

The equality holds for (2, q)-torus knots.

Tool. The adjunction inequality in 4-manifold theory is interpreted as follows: For a knot K and its Legendrian representative L with $\operatorname{tb}(L) \geq 1$, $\operatorname{tb}(L) + |\operatorname{rot}(L)| < g_0^s(K).$

Omae's knots

Omae (ex-student of Endo) asked me whether the following knot is slice or not.

• The 0-shake genus of Omae's knot is zero.