Unknotting theorem
for
delta and sharp
edge-homotopy

Ryo Nikkuni
(Kanazawa Univ., Japan.)
nick@ed.kanazawa-u.ac.jp
§1. Introduction

Crossing change:

Delta move:

Sharp move:

Each of them is known as an unknotting operation.

\[\Delta : [\text{H. Murakami - Nakanishi}] , \]

\[\# : [\text{H. Murakami}] [\text{Matveev}] \]
Definition 1.1. [Taniyama]

\[f, g : G \to S^3 \text{ sp. emb.} \]

\(f \) and \(g \) are edge-homotopic if
\[\iff f \text{ and } g \text{ are transformed into each other by self crossing changes and ambient isotopies.} \]

Here, self crossing change
\[= \text{ crossing change on the same spatial edge} \]

This is a generalization of Milnor's link homotopy.

\[\text{EH} \sim \]

\[\approx \]
Definition 1.2. \([N]\)

(1) \(f, g : G \rightarrow S^3\) sp. emb.

\(f\) and \(g\) are delta edge-homotopic

\(\iff\) \(f\) and \(g\) are transformed into each other by self delta moves and ambient isotopies.

This is a generalization of self \(\Delta\)-equivalence of links [Shibuya].
(2) G: oriented graph
$f, g : G \to S^3$ sp. emb.

f and g are sharp edge-homotopic

def \[\iff \] f and g are transformed into each other by self sharp moves and ambient isotopies.

This is a generalization of self $\#$-equivalence on links [Shibuya].
(1) Sharp edge-homotopy does not depend on the edge-orientations.

If we turn the orientations of all strings in a sharp move the other way at once, then the concluded move is also a sharp move.

(2) (DEH) \Rightarrow (#EH) \Rightarrow (EH)

A delta move can be realized by sharp moves

[Murakami - Nakanishi]
Theorem 1.3. [Taniyama]

For a graph G, the following are equivalent.

1. \exists f, g : G \rightarrow S^3 \text{ sp. emb. are edge-homotopic.}

2. $G / \equiv H \cong \begin{array}{c} \text{or} \\ K_4 \end{array}$ or $\begin{array}{c} \text{or} \\ D_3 \end{array}$

3. G is a generalized bouquet, namely $\exists v : \text{vertex of } G$

such that $H_s, t, H(t) (G - v \backslash \&) = 0$.

ex.
Main Theorem.

For a graph \(G \) which does not have a free vertex, the following are equivalent.

(1) \(\forall f, g : G \rightarrow S^3 \) sp. emb. are delta edge-homotopic,

(2) \(\forall f, g : G \rightarrow S^3 \) sp. emb. are sharp edge-homotopic.

(3) \(G \not\cong \bigcirc \lor \bigcirc \bigcirc \)

(4) \(G \) is a bouquet, namely \(\exists m \in \mathbb{N} \)

s.t. \(G \cong \ast \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \)

where \(m \) is a natural number.
Remark.

(1) All of 2-comp. links have been classified completely up to

\[
\begin{align*}
\text{DEH} & : \ [\text{Nakanishi-Ohyama}] \\
\#\text{EH} & : \ [\text{Shibuya}] \\
\end{align*}
\]

1k and generalized Sato-Levine Invariant

1k and reduced Art invariant

(2) All of spatial \(\Theta\)-curves have been classified completely up to

\[
\begin{align*}
\text{DEH} & : \ [N] \\
\#\text{EH} & : \ [N] \\
\end{align*}
\]

Sato-Levine invariant of the associated 2-comp. link

\text{mod 2 reduction of the sum of the Art invariant for knots constituent}
\(L = k_1 \cup k_2 \) \(2 \)-comp. ord. ori. link

\(a_i(\cdot) \): \(i \)-th coefficient of \(\nabla(z) \)

generalized Sato-LEVINE invariant:

\[a_3(L) = k(L) \left\{ a_2(k_1) + a_2(k_2) \right\} \]

\(\tilde{\beta}(L) \) \(\text{def} \)

reduced Arf invariant:

\[\overline{\text{Arf}}(L) \overset{\text{def}}{=} \text{Arf}(L) - \left\{ \text{Arf}(k_1) + \text{Arf}(k_2) \right\} \]

proper \((\in \{ 0, 1 \}) \)

Remark.

If \(k(L) = 0 \), then

\[
\begin{cases}
 \tilde{\beta}(L) = \beta(L) & \text{Sato-LEVINE inv.} \\
 \overline{\text{Arf}}(L) \equiv \beta(L) \pmod{2}
\end{cases}
\]
§ 2. C_θ-moves on spatial graphs

C_θ-move [Habiro]:

$t_\theta = 1:
\begin{array}{c}
- \quad X \quad C_1 \quad X
\end{array}$

$t_\theta \in \mathbb{Z}_2:

\textbf{This move is closely related to the Vassiliev invariant for knots.}$
C_2-move = delta move.
Lemma 2.1.

A C_K-move is realized by self delta moves and ambient isotopies if at least three of the $(k+1)$ strings in it belong to the same spatial edge.
Definition 2.2.
A Ck-move is an adjacent Ck-move.

\[\text{def} \quad \iff \text{All (k+1) strings in the move belong to exactly (k+1) mutually adjacent spatial edges.} \]

(Here, we regard a loop as two mutually adjacent edges.)
Lemma 2.3.
An adjacent C_k-move is realized by C_k+1-moves and ambient isotopies.

Remark.

$k=1$: [Motohashi - Taniyama]

$k=2$: [Taniyama - Yasuhara]

Lemma 2.3 is a generalization of the facts above.
§ 3. Proof of Main Theorem

(Proof.)

(1) \Rightarrow (2):
It is clear by $(\text{DEH}) \Rightarrow (\#\text{EH}).$

(2) \Rightarrow (3):

Note that:
For $f, g : G \to S^3$ sp. emb.
$f \#\text{EH} g \Rightarrow f|_H \#\text{EH} g|_H$
for $\forall H \subseteq G.$

So we have that (2) \Rightarrow (3).
(3) \implies (4):

Assume that \(G \not\cong \emptyset \) or 00

Claim 1. \(G \) is **non**-planar.

![Graphs K5 and K3,3](image)

Claim 2. \(G \) is a generalized bouquet.

\(G \): planar graph \(\not\exists \) disjoint cycles

(☺) the assumption & Claim 1.

\[\iff \quad G \text{ is a} \]

- generalized bouquet
- multipole wheel
- double trident

Claim 3. \(G \) is a bouquet.

Clear.
(4) \implies (1):

\[
\begin{align*}
(f & : B_n \to S^3 \text{ sp. emb.} \\
(h & : B_n \to S^3 \text{ trivial sp. emb.})
\end{align*}
\]

Step 1. $f \sim h$ (clear)

We can regard each of these C_1-moves as an adjacent C_1-move.

\[
\implies f \sim C_2 h \quad (\text{Lemma 2.3})
\]

Step 2. $f \sim C_2 h$

For each of these C_2-moves,

- If all strings belong to the same knot, by **Lemma 2.1** we can realize them by self delta moves.

- Otherwise, each of

 We can regard them as an adjacent C_2-move

 Lemma 2.3

\[
\implies f \sim C_3 h
\]
Step 3. \[f \rightsquigarrow h \]

For each of these \(C_3 \)-moves,

By following procedure above repeatedly

Step 2m. \[f \rightsquigarrow h \]

For each of these \(C_{2m} \)-moves,

\[f \in f(B_{2m}) \] s.t.

at least three of the \((2m+1)\) strings in the \(C_{2m} \)-move belong to it.

Lemma 2-1

\[\Rightarrow \]

realized by self delta moves.

\[f \rightsquigarrow h \]

This completes the proof. \(/// \)