New Hirzebruch-type Invariants from Iterated p-Covers

Jae Choon Cha

The 7th KAIST Geometric Topology Fair
July 9, 2007

A Hirzebruch-type invariant

Given M^3 closed
\[\phi: \pi, M \to \Gamma \]
\[\mathbb{Z}\Gamma \to k = (\text{skew}) \text{ field} \]
\[\text{char } = 0 \]
\[\exists \mathcal{W} \rightarrow \mathcal{B} \Gamma = k(\mathbb{Q}, 1) \]

Define $\lambda(M, \phi) = [\lambda^w]\mathcal{W} - [\lambda^w]\mathcal{W} \in L^0(k) = \text{Witt group over } k$

\text{K-coefficient ordinary intersection form}
\text{homology intersection form}

$c.f.$ Signature defects due to Hirzebruch, Atiyah, Patodi, Singer, ...

Proposition: $\lambda(M, \phi)$ is independent of W if $H_4(\Gamma) = 0$

Well-definedness (independence of W)

Given $W \rightarrow B \Gamma$, need to check: $[\lambda^w]\mathcal{W} - [\lambda^w]\mathcal{W}$
\[\text{i.e. for } V = W U - W' \]
\[[\lambda^w]\mathcal{V} = [\lambda^w]\mathcal{W} \]

An Atiyah-type Lemma:
\[\begin{cases} V \text{ closed} \\ H_4(\Gamma) = 0 \end{cases} \Rightarrow [\lambda^w]\mathcal{W} = [\lambda^w]\mathcal{W} \]

$c.f.$ Signature theorems of Atiyah, Singer, Patodi, ...
from "index theory": (twisted signature) = (signature)

Our main example: $\Gamma = \mathbb{Z}_2$, $Z\Gamma \to \mathbb{Q}(5_2)$, $5_2 = \exp(\frac{\pi i}{\sqrt{2}})$
\[\Rightarrow L^0(\mathbb{Q}(5_2)) \text{ is NOT torsion free!} \]

Link Concordance and Homology cobordism

$L, L' \subseteq S^3$ are concordant
$L \times [0, 1] \cong \mathbb{C}$
$L \cong \text{slice}$
$L \sim \text{unlink}$

$L \times [0, 1]$ is disjoint from S^3 for 0-framed surgery

$S^3 \stackrel{\text{O}(L)}{\longrightarrow} \text{Lsurgeries}$

$M_L := \text{"surgery manifold" of } L$

Fact: L, L' are concordant $\Rightarrow M_L, M_L'$ are homology cobordant

$\exists W \rightarrow \mathcal{B} \Gamma = k(\mathbb{Q}, 1)$
Invariants from p-towers \((p: \text{prime}) \)

\[M_n \xrightarrow{\ldots} M_1 \xrightarrow{\mu} M_0 = M \quad \text{tower of abelian p-covers} \]

\(\phi: \pi_1(M_n) \to \mathbb{Z}_d \quad (d=p^a) \quad \text{character} \)

Given a p-structure \(\mathcal{J} = (\gamma; M, \phi) \), \(\lambda(M_n, \phi) \) is defined.

Remark: (1) For any (nonabelian) p-cover \(\widetilde{M} \) of \(M \), \(\exists \gamma; M, \phi \) s.t. \(M \simeq \widetilde{M} \).

(2) \(M_n \) can be an irregular cover of \(M \).

Alternative description: \(p \)-virtual character of \(\pi_1(M) \)

\[\phi: H \to \mathbb{Z}_d, \quad [G; H] = p^a \quad \Rightarrow \quad \exists \ p\text{-tower} \quad \gamma; M \]

\[G = \pi_1(M), \quad \text{s.t.} \quad \pi_1(M_n) = H \subseteq \pi_1(M) \]

\[\Rightarrow \quad \lambda(M_n, \phi) \in L^0(\mathbb{Q}(\sqrt{d})) \]

Advantages of our invariants

(1) It extracts geometric information from \(\pi_1(M)^{(n)} \) for higher \(n \).

(2) It detects "torsion", as well as elements of order \(d \) of \(\mathbb{Z} \).

\[\text{Signature} \quad L^0(C) \cong \mathbb{Z} \]

\[L^0(\mathbb{Q}(\sqrt{d})) \]

\[\Delta \quad \text{discriminant} \quad \mathbb{Q}(\sqrt{5d + 5d^{-1}}) \]

\[\left\{ \begin{array}{l}
\text{Norm residue symbol} \\
\text{(Artin reciprocity)}
\end{array} \right\} \]

\[\text{Norm} \quad \mathbb{Z}_2 \]

(3) In many interesting cases, \(\lambda(M_n, \phi) \) can be computed via a combinatorial algorithm on graphs.
"Exotic" homology cobordism classes of rational 3-spheres

Theorem: \(\exists \) rational homology 3-spheres \(M_0, M_1, M_2, \ldots \)
with the following properties:

1. Homology equivalence \(M_i \to M_0 \) for all \(i \).
2. Known homology cobordism invariants vanish for \(M_i \):
 - Wall multisymp signedatures \([\text{Gilmer-Livingston}]\)
 - Atiyah-Patodi-Singer \(\eta \)-invariants \([\text{Levine}]\)
 - Cheeger-Gromov \(L^2 \)-signatures \([\text{Harvey}]\)
3. For \(i \neq j \), \(M_i \) and \(M_j \) are not homology cobordant.

Choose \(P/\mathbb{Q} \) s.t. \(L(P,\mathbb{Q}) \) bounds a rational 4-ball, and let

\[
M_i = L(P,\mathbb{Q}) \# L(P,\mathbb{Q}) \quad \text{infected by } K_i = -2 \cdot \text{full twist}
\]

\(L(P,\mathbb{Q}) \) has vanishing signatures \rightarrow \text{Signatures vanish for } M_i

\(K_i \) is torsion (signature = 0)

Using algebraic number theory, we construct \(\{a_i\} \) together with "dual primes" \(\{\beta_i\} \) s.t.

\[
\left(\text{norm residue symbol of } \beta_i \right) = 1 \quad \text{if } i \neq j \quad \text{and} \quad 0 \quad \text{if } i = j
\]

\(\{M_i\} \) realizes \(\mathbb{Z}_2^\infty \subseteq L^0(\mathbb{Q}(S_4)) \)

Iterated Bing doubles

\[
K \to BD(K) \to BP_2(K) \to \cdots \to BD_n(K)
\]

Question: When is \(BD_n(K) \) slice? (Many known invariants vanish!)

Difficulty: the complication is invisible on "abelianization"

\[
x = xyx^{-1}y^{-1}
\]

\(x^2 y = \text{trivial link} \)

But, the infection curve \(\alpha \) survives in \(H_1(\text{iterated p-covers}) \):

\[\text{e.g., } n=1: y \to x \to \mathbb{Z}_2 \oplus \mathbb{Z}_2 \text{ cover} \]

\[xyx^{-1}y^{-1} = \alpha \]

This enables us to detect non-slice iterated Bing doubles using our results:

Theorem: If the Levine-Tristram signature \(\sigma_k: S^1 \to \mathbb{Z} \) is nontrivial, then \(BD_n(K) \) is not slice for any \(n \).

\(\Rightarrow [\text{Harvey, Teichner}] \text{ If } \int S^1 \sigma_k \neq 0, \text{ then } BD_n(K) \text{ is not slice} \)

(The proof uses \(L^2 \)-signatures.)
2-torsion

L is called 2-torsion if L # L is slice \(\Rightarrow L \) is conc to \(-L\)

e.g. \(K = 4_i = \begin{array}{c}
1
\end{array} \Rightarrow K \approx -K \Rightarrow K \) is 2-torsion
(amphichiral)

Facts:
1. \(K \) 2-torsion \(\Rightarrow BD_n(K) \) 2-torsion
2. Known (signature) invariants fail to distinguish
 \(BD_n(K) \) from a slice link when \(K \) is torsion

Question [Teichner, Schneiderman, Giacinto, Friedl, Cochran, …]
Is \(BD(4_i) \) a slice link?

Theorem: There are infinitely many amphichiral \(K \) (including \(4_i \))
 s.l. \(BD_n(K) \) is not slice for all \(n \).

Cochran-Orr-Teichner's solvable filtration

\(L \) is \((n) \)-solvable \(\iff \exists \mathcal{U}^4 \) whose \(\mathbb{Z}_{[\mathcal{U}^4]} \)-coeff. duality

\((n) \)-solvable \(\text{def} \) \(\begin{array}{c}
\mathcal{U}^4
\end{array} \) “looks like” \(\begin{array}{c}
\text{slice}
\text{disk}
\text{exterior}
\end{array} \)

\(\mathcal{U}^4 \)

COT filtration:
\(\{ \text{(n)-solv. links} \} / \text{conc.} \)

\(\mathcal{U}^4 \subseteq \cdots \subseteq \mathcal{U}^3 \subseteq \mathcal{U}^2 \subseteq \mathcal{U}^1 \subseteq \{ \text{links} \} / \text{conc.} \)

Question: Is there any (nontrivial) torsion in higher terms?

Theorem: \(L \in \mathcal{F}(n, 5) \) \(\Rightarrow \) for any \(p \)-structure \((\mathcal{M}, \phi, \theta) \)
 of height \(n \), \(\lambda(M_n, \phi) = 0 \).

Theorem: \(\exists \) infinitely many 2-torsion \(L \in \mathcal{F}(n_0) \cap \mathcal{F}(n_1) \).

String link concordance "group"

- \(\mu \) : meridian map
- \(\beta = \begin{array}{c}
\text{meridian map}
\end{array} \)

\(\mathcal{E}_{SL} := \{ \text{string links} \} / \text{concordance} \)

product: concatenation
inverse: mirror image

\(\mathcal{E}_{SL} := \text{subgp gen. by } \{ \beta \} \subseteq \mathcal{E}_{SL} \)

COT filtration:
\(\mathcal{U}^4 \subseteq \cdots \subseteq \mathcal{U}^3 \subseteq \mathcal{U}^2 \subseteq \mathcal{U}^1 \subseteq \mathcal{U}^0 \subseteq \mathcal{E}_{SL} \)

subgp gen. by \((n) \)-solvable \(\# \)-string links

Proposition: For \(\beta \in \mathcal{E}_{SL} \), \(\mu \) induces a bijection

\(\{ p \text{-structures } (\mathcal{X}, \phi, \theta) \} \approx \{ p \text{-structures } (\mathcal{M}, \phi, \theta) \} \)

for \(\mathcal{X} = (\mathcal{X}, \phi, \theta) \) of height \(n \), define \(\lambda_{\mathcal{X}}(\beta) := \lambda(M_n, \phi) \).

Def. \(\beta \) is an \(\mathcal{F} \)-string link if \(\mu \) induces \(\overline{\pi}_1(\mathcal{X}) = \overline{\pi}_1(S^3 - \beta) \)

where \(\overline{\pi}_1 = \text{"algebraic closure of } \overline{\pi}_1(\mathcal{X}) \]

[Levine, Vogel, C, …]

\(\hat{\mathcal{E}}_{SL} := \text{subgp gen. by } \mathcal{F} \)-string links \(\subseteq \mathcal{E}_{SL} \)

Subgroup generated by \((n) \)-solvable \(\# \)-string links

Proposition: For \(\beta \in \hat{\mathcal{E}}_{SL} \), \(\mu \) induces a bijection

\(\{ p \text{-structures } (\mathcal{X}, \phi, \theta) \} \approx \{ p \text{-structures } (\mathcal{M}, \phi, \theta) \} \)

For \(\mathcal{X} = (\mathcal{X}, \phi, \theta) \) of height \(n \), define \(\lambda_{\mathcal{X}}(\beta) := \lambda(M_n, \phi) \).
Theorem: For any $\mathcal{I} = (x_1, \ldots, x_n)$ with height of $\{x_i\} \leq n$, $\lambda_\mathcal{I}(\beta)$ induces a group homomorphism

$$\lambda_\mathcal{I} : \frac{\widehat{F}_n}{\widehat{\mathcal{F}}_{(n,5)}} \to \mathcal{L}(S^3)$$

We say \mathcal{I} is locally trivial if Θ kills lifts of powers of $x_i = i^{th}$ circle of $X = \sqrt{m \bar{S}^1}$.

Theorem: If \mathcal{I} is locally trivial, $\lambda_\mathcal{I}(\beta) = \lambda_\mathcal{I}(\beta$ with "local knots")

Remark: \mathcal{I}/local knots \leadsto sophistication peculiar to "links"

Theorem: abelianization of $\frac{\widehat{B}_n}{\widehat{B}_{(n,5)}} \cdot \langle \text{local knots} \rangle \cong \mathbb{Z}^\infty$

c.f. Harvey defined $p_n : \frac{\partial B_n}{\partial B_{(n,5)}} \to \mathbb{R}$ and using it, showed (abelianization of $\frac{\partial B_n}{\partial B_{(n,5)}}$) $\cong \mathbb{Z}^\infty$

Theorem: The kernel of p_n is large: abelianization of $\text{Ker} p_n \cong \mathbb{Z}^\infty$

i.e. \exists infinitely many "independent" string links in $\text{Ker} p_n$.

Independence of links

Theorem: \exists infinitely many $L_i \in \mathcal{F}_{(n,5)}$ "independent mod $\mathcal{F}_{(n,5)}$" w.r.t. connected sum in the following sense:

$\# a_i L_i \in \mathcal{F}_{(n,5)}$ for some disk basings $\implies a_i = 0 \forall_i$.

Theorem: \exists infinitely many 2-torsion $L_i \in \mathcal{F}_{(n,5)}$ which are "independent mod $\mathcal{F}_{(n+1,5)}$" in the following sense:

For $a_i \in \{0, 1\}$, $\# a_i L_i \in \mathcal{F}_{(n+1,5)}$ for some disk basings

$\implies a_i = 0 \forall_i$.

Thank You!