A characterization of cones in the projective space

July, 2007

Kyeonghee Jo
1. Cones in the projective space
2. Domains with flat boundary pieces
3. Quasi-homogeneous domains
4. Previous results about cones
5. A characterization of convex cones
6. A characterization of cones
7. A characterization of quasi-homogeneous cones
Cones in the projective space

Definition 1. $\Omega :$ a domain in \mathbb{RP}^n

$B :$ a domain of a hyperplane H of \mathbb{RP}^n

- $C(B) :$ a cone over B
 - a cone with the infinite boundary \overline{B} in the affine space $\mathbb{A}^n = \mathbb{RP}^n \setminus H$,

- $\{b\} \vee B :$ a cone over B with a cone point b.

(i) $C(B)$ is projectively equivalent to each component of $\pi^{-1}(B)$, where $\pi : \mathbb{R}^n \rightarrow H \simeq \mathbb{RP}^{n-1}$,

(ii) There are two cones over B with a cone point b,

(iii) $C(B)$ is well-defined up to projective equivalence (not depending on the cone point)

(iv) $\{b\} \vee B = \{b\} + B$, if B is properly convex.
Cones in the projective space - convex sums

- A properly convex domain Ω is called a *convex sum* of its faces F_1 and F_2, which will be denoted by

$$\Omega = F_1 + F_2,$$

if it is the interior of the convex hull of $\overline{F_1} \cup \overline{F_2}$ when we consider Ω as a bounded set in an affine space \mathbb{A}^n in \mathbb{RP}^n, i.e., it is the union of all open line segments joining points in F_1 to points in F_2.

- Note that if the dimensions of F_1, F_2 and Ω are k_1, k_2 and n respectively, then $n = k_1 + k_2 + 1$.
Domains with flat boundary pieces

We say $\partial \Omega$ is \textit{locally flat} at p if there is a hyperplane H and an open ball B_p centered at p such that $\Omega \cap B_p$ is an open half ball with $H \cap B_p \subset \partial \Omega$.

Definition 2. Let Ω be a domain in \mathbb{RP}^n.

(i) Ω has a \textit{flat boundary piece} P if P^0 is a connected open subset of hyperplane H with $P^0 = P$ and $\partial \Omega$ is locally flat at each $p \in P^0$,

(ii) Ω has a \textit{strongly flat boundary piece} P if P is a flat boundary piece of Ω with $\langle P \rangle = H$ and there is an open neighborhood U of P such that $\Omega \cap U$ is contained in an open half space H^+ with boundary H.
Quasi-homogeneous domains

Definition 2. Ω is a domain in \mathbb{R}^n (or \mathbb{RP}^n).

(i) Ω is *quasi-homogeneous* if \exists a compact subset $K \subset \Omega$ and a subgroup G of Aut(Ω) such that $GK = \Omega$.

(ii) Ω is *divisible* if \exists a cocompact discrete subgroup H of Aut(Ω) acting on Ω properly.

(iii) Ω is a *homogeneous domain* if Aut(Ω) acts on Ω transitively.

If M is a compact affine(projective, resp.) manifold and D is a developing map from \tilde{M} to $\mathbb{R}^n (\mathbb{RP}^n$, resp.), then

- $D(\tilde{M})$ is quasi-homogeneous.
- $D(\tilde{M})$ is divisible if D is a diffeomorphism onto $D(\tilde{M})$.
Previous results

- **Vinberg**(1963) classified all homogeneous convex cones algebraically.

- **Kuiper**(1953) classified 2-dimensional quasi-homogeneous convex domains while he was classifying convex compact projective surfaces.

- **Vey**(1970)
 Any quasi-homogeneous properly convex affine domain is a cone if it contains an open cone.

- **Benzécri**(1960)
 Any quasi-homogeneous properly convex projective domain with a face F of codimension 1 is the convex sum of F and a point in the boundary.

- **Benoist** (2000s) has been studying divisible convex domains and found many interesting examples.
A characterization of convex cones

I

Thm 1. \(\Omega \subset \mathbb{RP}^n \): properly convex domain

\(F : (n - 1) \)-dimensional face of \(\Omega \)

\(\text{Aut}_{\text{proj}}(\Omega)x \) accumulates to a point in \(F \), \(x \in \Omega \)

Then

\[\Omega = \{ \xi \} + F, \quad \xi \in \partial \Omega. \]

Proof.

\[\exists x \in \Omega, \{ g_i \} \subset \text{Aut}_{\text{proj}}(\Omega) \text{s.t.} \lim_{i \to \infty} g_i(x) = p \in F. \]

\[\Rightarrow g = \lim_{i \to \infty} g_i, \text{Ran}(g) = \langle F \rangle, g(\Omega) = F \]

and \(\text{Ker}(g) = \{ z \} \) is an extreme point.

Case 1: \(z \notin \langle F \rangle \)

Case 2: \(z \in \langle F \rangle \)
Case 1: $z \notin \langle F \rangle$

\[
\lim_{i \to \infty} g_i(F) = g(F) = \overline{F}
\]

$\Rightarrow g(\{z\} \lor F) = F, g(\{z\} \lor (\langle F \rangle \setminus \overline{F})) = \langle F \rangle \setminus \overline{F}$

$\Rightarrow \Omega = \{z\} \lor F = \{z\} \dot{+} F$, one of two convex sums by connectedness of Ω.

Case 2: $z \in \langle F \rangle$

$E = \{b \in \partial\Omega \mid bz \cap \Omega \neq \emptyset\}$

$\Rightarrow E$ is an $(n - 1)$-dimensional face of Ω.

$\Rightarrow \{z\} \dot{+} E = \Omega$

$\Rightarrow \Omega = g_k(\Omega) = \{g_k(z)\} \dot{+} g_k(E) = \{g_k(z)\} \dot{+} F$

for some k, since $g_i(E)$ uniformly converges to $g(E) \subset F$. \hfill \Box
Coro 1. Let Ω be a convex domain in \mathbb{R}^n and F an $(n-1)$-dimensional face of Ω. Suppose that there is a sequence $\{g_i\}$ of affine transformations which preserve Ω and a point x in the interior of Ω such that $\{g_i(x)\}$ accumulates to an interior point of F. Then

$$\Omega = \mathbb{R}^+ \times F.$$
A characterization of cones

Thm 2. Let Ω be a domain with a flat boundary piece P satisfying

(i) P is a component of $\langle P \rangle \cap \Omega$,

(ii) P has no complete line.

Then $\Omega = C(P^0)$ iff there is an accumulation point $p \in P^0$ under the action of $\text{Aut}(\Omega)$.
Thm 3. Let Ω be a quasi-homogeneous affine domain with a flat boundary piece P satisfying

(i) P is a component of $\langle P \rangle \cap \Omega$,

(ii) P has no complete line.

Then $\Omega = \mathbb{R}^+ \times P^0$, which is projectively equivalent to $C(P^0)$.

- In convex case,

 $\text{Theorem 1} \implies \text{Vey(1970), Benzécri(1960)}$.

 ($:\because \text{every point in any face of properly convex domain is an accumulation point.}$)

- A quasi-homogeneous domain is stable. (\times)

- $\exists g_n$ such that $\lim_{n \to \infty} g_n(\Omega) = C(P^0)$. ($\times$)

So we cannot apply Benzécri’s idea to non-convex case.

Proof. (i) Show that \exists a sequence g_n and $x \in \Omega$ such that $g_n(x)$ converges to a point in P^0.

(ii) Apply Theorem 2.
• $\mathcal{C}(n)$: the set of all convex bodies in \mathbb{RP}^{n+1} (with the topology induced from the Hausdorff metric on the set of all closed subsets of \mathbb{RP}^{n+1})

• $\mathcal{L}(n) = C(n)/ \text{PGL}(n + 1, \mathbb{R})$

• A convex body C is stable
 $\iff \{[C]\} = \{[C]\}$ in $\mathcal{L}(n)$
 $\iff \{[C]\}$ is closed in $\mathcal{L}(n)$
 \iff if g_nC converges to a convex body C', then $C = f(C')$ for some $f \in \text{PGL}(n + 1, \mathbb{R})$.

• The closure of a quasi-homogeneous properly convex domain is a stable convex body.
counter examples

The existence of an accumulation point in the flat boundary piece is not a sufficient condition for being a cone.

(i) $\Omega = \Omega_1 \cup \Omega_2$

$\Omega_1 = \{(x, y) \in \mathbb{R}^2 \mid x > 1\}$
$\Omega_2 = \{(x, y) \in \mathbb{R}^2 \mid 0 < x \leq 1, y > 0\}$

$g_n = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{n} \end{pmatrix}$, $P = \{(x, y) \in \mathbb{R}^2 \mid 0 \leq x \leq 1, y = 0\}$.

- P is a flat boundary piece of Ω,
- $\lim_{n \to \infty} g_n(1/2, 1) = (1/2, 0) \in P^0$,
- Ω is not a cone.

(ii) $\Omega = \Omega_1 \cup \Omega_2$

$\Omega_1 = \{(x, y) \in \mathbb{R}^2 \mid x \leq 0, y > 0\}$
$\Omega_2 = \{(x, y) \in \mathbb{R}^2 \mid x > 0, 0 < y < 1/x\}$

$g_n = \begin{pmatrix} 2^n & 0 \\ 0 & \frac{1}{2^n} \end{pmatrix}$, $P = \{(x, y) \in \mathbb{R}^2 \mid y = 0\}$.

- P is a flat boundary piece of Ω,
- $\lim_{n \to \infty} g_n(0, y) = (0, 0) \in P^0$,
- Ω is not a cone.
Counter example (i)

\[g_n = \left(\frac{1}{n}, \frac{1}{n^2} \right) \]

Counter example (ii)

\[g_n = \left(\frac{2^n}{n}, \frac{1}{2^n} \right) \]
\[\Omega = \{(x,y) \in \mathbb{R}^2 \mid x > 0, y > 0\} \]

\(\Omega \) is not a cone in our sense.
But \(\Omega \) is a cone in a vector space \(\mathbb{R}^2 \).
P is a flat boundary piece of Ω, but not strongly flat.
$\text{IRP}^3 \setminus H \cong \mathbb{E}^2$.
Case 1.

\(\Omega_1, \Omega_2 \): convex sums of \(F \) and \{z\}.

\[F + \{z\} \]
\[C(F), \ F \cup \{z\} \]

\(\Omega_3, \Omega_4 : (\langle F \rangle \setminus \overline{F}) \cup \{z\} \).

\[g(\Omega_1 \cup \Omega_2) = F \]
\[g(\Omega_3 \cup \Omega_4) = \langle F \rangle \setminus \overline{F} \]
\[g(\Omega) = F \]

\[\Rightarrow \] \(\Omega \) is either \(\Omega_1 \) or \(\Omega_2 \).
Cone over a point

Cone over an interval

Cone over a triangle

Cone over a ball
Cone over a strictly convex domain
$x^2 + y^2 = 1$

$y = x^2$

$(a, \frac{1}{a}, 1) \leftrightarrow [at. \frac{t}{a}, t]$

$xy = z^2$

$(x, y, z) = \left(\frac{1}{2}, \frac{1}{2}, 0 \right)$

$(x+y)(x-y) = z^2$

x^2, y^2, z^2

$X = Y^2 + Z^2$
\[g_n \in \operatorname{PGL}(3, \mathbb{R}) \text{ s.t. } g_n(\mathcal{H}) \rightarrow C(F) \]

\[g_n(\mathcal{H}) \rightarrow C(F) \]

\[g_n(\mathcal{H}) \rightarrow C(F) \]
A quasi-homogeneous domain is stable. (×)

\[g_n = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{n} \end{pmatrix} \]

\[g_n \Omega \rightarrow \]
Affine domains and projective domains

Affine domains can be considered as projective domains by the following equivariant embedding:

\[(i, \rho) : (\mathbb{E}^n, Aff(n)) \rightarrow (\mathbb{R}P^n, PGL(n + 1, \mathbb{R}))\]

\[i(x_1, \ldots, x_n) = [x_1, \ldots, x_n, 1]\]

\[\rho(A, a) = \begin{pmatrix} A & a \\ 0 & 1 \end{pmatrix}\]
Vey: Any quasi-homogeneous properly convex affine domain is a cone if it contains an open cone.
Benzécri: \(\Omega: \) quasi-homogeneous properly convex domain
\(F: \) face of \(\Omega \) with codim 1.

\[\Rightarrow \Omega = F + \{b\} \quad \text{for some} \ b \in \partial \Omega \]

\[\exists \ g \in \text{PGL}(3, \mathbb{R}) \ \text{st.} \]
\[g^n(\Omega) \rightarrow F + \{p_3\} \]

\[g = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \]
\[g^n(\Omega) \rightarrow F \times \mathbb{R}^+ \quad (\text{in} \ \mathbb{R}^2) \]
\[F + \{p_3\} \quad (\text{in} \ \mathbb{R}P^2) \]

By stability of quasi-homogeneous properly convex domains,
\(\Omega \) is projectively equivalent to \(F + \{p_3\} \).