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It is well known that every word hyperbolic group has a well-defined visual boundary.
An example of C. Croke and B. Kleiner shows that the same cannot be said for CAT(0)
groups. All boundaries of a CAT(0) group are, however, shape equivalent, as observed by
M. Bestvina and R. Geoghegan. Bestvina has asked if they also satisfy the stronger condition
of being cell-like equivalent. This article describes a construction which will produce CAT(0)
groups with multiple boundaries. These groups have very complicated boundaries in high
dimensions. It is our hope that their study may provide insight into Bestvina’s question.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The CAT(0) condition is a geometric notion of nonpositive curvature, similar to the definition of Gromov δ-hyperbolicity.
A complete geodesic space X is called CAT(0) if it has the property that geodesic triangles in X are “no fatter” than geodesic
triangles in Euclidean space (see [4, Chapter II.1] for a precise definition). The visual or ideal boundary of X , denoted ∂ X , is
the collection of endpoints of geodesic rays emanating from a chosen basepoint. It is well known that ∂ X is well defined
and independent of choice of basepoint. Furthermore, when given the cone topology, X ∪ ∂ X is a Z -set compactification
for X . A group G is called CAT(0) if it acts geometrically (i.e. properly discontinuously and cocompactly by isometries) on
some CAT(0) space X . In this setup, we call X a cocompact CAT(0) G-space and ∂ X a CAT(0) boundary of G .

It is an important fact in geometric group theory that every negatively curved group (that is, every word hyperbolic
group) has a well-defined visual boundary. Specifically, if a group G acts geometrically on two different CAT(−1) spaces,
then the visual boundaries of these spaces will be homeomorphic. In the absence of strict negative curvature, the situation
becomes more complicated.

We will call a CAT(0) group rigid if it has only one topologically distinct boundary. P.L. Bowers and K. Ruane showed
that if G splits as the product of a negatively curved group with a free abelian group, then G is rigid [3]. Ruane proved
later in [14] that if G splits as a product of two negatively curved groups, then G is rigid. T. Hosaka has extended this work
to show that in fact it suffices to know that G splits as a product of rigid groups [8]. Another condition which guarantees
rigidity is knowing that G acts on a CAT(0) space with isolated flats [9,10].

Not all CAT(0) groups are rigid, however: C. Croke and B. Kleiner constructed in [5] an example of a non-rigid CAT(0)

group G . Specifically, they showed that G acts on two different CAT(0) spaces whose boundaries admit no homeomorphism.
J. Wilson proved in [15] that this same group has uncountably many boundaries. More recently it has been shown in [12]
that the knot group G of any connected sum of two nontrivial torus knots has uncountably many CAT(0) boundaries.
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On the other end of the spectrum, it has been observed by M. Bestvina [2], R. Geoghegan [6], and P. Ontaneda [13]
that all boundaries of a given CAT(0) group are shape equivalent. Bestvina then posed the question of whether they satisfy
the stronger condition of being cell-like equivalent. R. Ancel, C. Guilbault, and J. Wilson showed in [1] that all the currently
known boundaries of Croke and Kleiner’s original group satisfy this property; they are all cell-like equivalent to the Hawaiian
earring.

Further progress on Bestvina’s question has been hampered by a lack of examples of non-rigid CAT(0) groups. The
results in [12] have boundaries which are similar to the boundaries of the Croke–Kleiner group and, as such, are unlikely to
shed new light on Bestvina’s question. One simple approach to producing other non-rigid CAT(0) groups is to take a direct
product G × H of two CAT(0) groups where one of the factors is not rigid (either the Croke–Kleiner group or one of the
groups from [12]). However, it was proven in [11] that the answer to Bestvina’s question is “Yes” for CAT(0) groups of this
form.

The goal of this article is to describe a construction which will yield a richer collection of non-rigid CAT(0) groups. Our
work borrows freely from the main ideas of [5], but in the end, we have a flexible strategy for producing CAT(0) groups
which have very complicated boundaries in high dimensions. We are not claiming new progress on Bestvina’s question, but
it is our hope that the study of this new collection may provide insight.

The main theorem of this paper is the following.

Theorem 1. Let Γ− and Γ+ be infinite CAT(0) groups and m and n be positive integers. Then the free product with amalgamation

G = (
Γ− × Z

m) ∗Zm
(
Z

m × Z
n) ∗Zn

(
Z

n × Γ+
)

is a non-rigid CAT(0) group.

Observe that we get the Croke–Kleiner group if we take Γ− = Γ+ = Z and m = n = 1 in this theorem. In general, though,
any boundary of G will contain spheres of dimension m + n − 1. Thus by choosing m and n to be large, we get a non-rigid
CAT(0) group whose boundaries have high dimension.

2. Croke and Kleiner’s original construction

Before diving into the proof of Theorem 1, we quickly sketch the proof of the main theorem of [5]. The CAT(0) spaces X
constructed have the property that each is covered by a collection of closed convex subspaces, called blocks. The visual
boundary ∂ B of every block B is the suspension of a Cantor set. The suspension points are called poles. The intersection of
two blocks is a Euclidean plane called a wall. We then have the following five statements for each X .

Theorem A. ([5, Section 1.4]) The nerve N of the collection of blocks is a tree.

Theorem B. ([5, Lemma 3]) Let B0 and B1 be blocks, and D be the distance between the corresponding vertices in N. Then:

(1) If D = 1, then ∂ B0 ∩ ∂ B1 = ∂W where W is the wall B0 ∩ B1 .
(2) If D = 2, then ∂ B0 ∩ ∂ B1 is the set of poles of B 1

2
where B 1

2
intersects B0 and B1 .

(3) If D > 2, then ∂ B0 ∩ ∂ B1 = ∅.

A local path component of a point in a space is a path component of an open neighborhood of that point.

Theorem C. ([5, Lemma 4]) Let B be a block and ζ ∈ ∂ B not be a pole of any neighboring block. Then ζ has a local path component
which stays in ∂ B.

Theorem D. ([5, Corollary 8]) The union of block boundaries in ∂ X is the unique dense safe path component of ∂ X.

The definition of safe path will be given in Section 6.3. For now, it suffices to understand that Theorem D gives a way
to topologically distinguish the union of block boundaries in ∂ X . With these thereoms in hand, it is not hard to prove
that given two constructions X1 and X2, any homeomorphism ∂ X1 → ∂ X2 takes poles to poles, block boundaries to block
boundaries, and wall boundaries to wall boundaries. The last piece of the puzzle is Theorem E. Given 0 < θ � π/2, we can
construct Xθ in such a way that the minimum distance between poles is θ . This distance is in the sense of the Tits path
metric on the boundary of a block containing both poles. For a block B , we denote by ΠB the set of poles of blocks which
intersect B at a wall.

Theorem E. ([5, Lemma 9], also [15, Proposition 2.2]) For a block B, the union of boundaries of walls of B is dense in ∂ B and ΠB is
precisely the set of points of ∂ B which are a Tits distance of θ from a pole of B.
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Using these five theorems, we get the following statement.

Theorem F. Let B be a block and L be a suspension arc of ∂ B. Then |L ∩ ΠB| = 1 iff θ = π/2.

Therefore ∂ Xπ/2 �≈ ∂ Xθ for any θ < π/2, which is the main theorem of [5]. In this article, we produce for every group G
in question a pair of cocompact CAT(0) G-spaces X and X ′ and show that Theorems A–D still hold. These four theorems,
along with an analogue to Theorem E will be used to prove that there is no homeomorphism ∂ X → ∂ X ′ .

3. Block structures on CAT(0) spaces

We begin by observing that the work in Sections 1.4–5 of [5] does not depend on the specific construction used in [5].
The same observations apply if we replace their definition of a block with the following one.

Definition 3.1. Let X be a CAT(0) space and B be a collection of closed convex subspaces covering X . We call B a block
structure on X and its elements blocks if B satisfies the following three properties:

(1) Every block intersects at least two other blocks.
(2) Every block has a (+) or (−) parity such that two blocks intersect only if they have opposite parity.
(3) There is an ε > 0 such that two blocks intersect iff their ε-neighborhoods intersect.

If we refer to blocks as left or right, we mean that the former have parity (−) and the latter have parity (+). The nerve
of a collection C of sets is the (abstract) simplicial complex with vertex set {v B | B ∈ C} such that a simplex {v B1 , . . . , v Bn }
is included whenever

⋂n
i=1 Bi �= ∅. In exactly the same way as in [5], we get that the nerve N of the collection of blocks is

a tree, and we can define the itinerary of a geodesic. A geodesic α is said to enter a block if it passes through a point which
is not in any other block. The itinerary of α is defined to be the list [B1, B2, . . .] where Bi is the ith block that α enters.
This list is denoted by Itinα. The following lemma follows in exactly the same way as [5, Lemma 2], which simply uses the
fact that a block B is convex and that its topological frontier is covered by the collection of blocks corresponding to the link
in N of the vertex v B .

Lemma 3.2. If Itinα = [B1, B2, . . .], then [v B1 , v B2 , . . .] is a geodesic in N .

We may also talk about the itinerary between two blocks. If [v B1 , . . . , v Bn ] is the geodesic edge path in N connecting two
vertices v B ′

0
and v B ′

1
, then we call [B1, . . . , Bn] the itinerary between B ′

0 and B ′
1 and write

Itin
[

B ′
0, B ′

1

] = [B1, . . . , Bn].
The two notions of itineraries are related in the following way: The itinerary of a geodesic segment α is the shortest
itinerary Itin[B ′

0, B ′
1] for which α begins in B ′

0 and ends in B ′
1. Note that the same observations which gave us Lemma 3.2

also provide the following:

Lemma 3.3. Let B ′
0 and B ′

1 be blocks, write Itin[B ′
0, B ′

1] = [B1, . . . , Bn], and let α be a geodesic beginning in B ′
0 and ending in B ′

1 .
Then:

(1) α enters Bk for every 1 < k < n.
(2) α passes through Bk ∩ Bk+1 for every 1 � k < n.
(3)

⋃n
k=1 Bk is convex.

We call a geodesic ray rational if its itinerary is finite and irrational if its itinerary is infinite. A point of ∂ X is called
irrational if it is the endpoint of an irrational geodesic ray; otherwise we call it rational. We denote the set of rational points
of ∂ X by RX and the set of irrational points by IX.

Lemma 3.4. Let α be an irrational geodesic ray. Then for any block B0 ,

lim
t→∞ d

(
α(t), B0

) = ∞.

Proof. Write Itinα = [B1, B2, . . .]. Since N is a tree, we can find M > 1 so that for every m � M , Itin[B0, Bm] � BM . For
m � M , choose a time tm such that α(tm) ∈ Bm . Then
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lim
t→∞ d

(
α(t), B0

)
� lim

t→∞ d
(
α(t), BM

)
= lim

m→∞d
(
α(tm), BM

)
� lim

m→∞d(Bm, BM).

Hence, it suffices to prove the following.

Claim. Let ε be given as in condition (3) of Definition 3.1. Then whenever d(v B , v B ′ ) � 2k, we have d(B, B ′) � 2kε .

Note that whenever d(v B , v B ′ ) = 2, then we have d(B, B ′) � 2ε because the ε-neighborhoods of B and B ′ do not overlap.
Assume Itin[B, B ′] = [B0, B1, . . . , Bn], where n � 2k. Then for any x ∈ B and x′ ∈ B ′ , the geodesic [x, x′] passes through B2i
for 0 � i � k at some point zi . So

d
(
x, x′) =

k−1∑
i=0

d(zi, zi+1)

� 2kε. �
Corollary 3.5.

(1) RX is the union of block boundaries in ∂ X, and IX is its complement.
(2) If ζ ∈ IX, then every geodesic ray going out to ζ is irrational.
(3) If ζ ∈ IX and α and β are geodesic rays going out to ζ , then the itineraries of α and β eventually coincide.

A geodesic space is said to have the geodesic extension property if every geodesic segment can be extended to a geodesic
line. As is true with the original Croke–Kleiner construction, the blocks we construct will satisfy the geodesic extension
property.

Lemma 3.6. If blocks have the geodesic extension property, then RX is dense.

Proof. Let α be an irrational geodesic ray and write Itinα = [B1, B2, . . .]. For each n � 1, let tn be a time at which α(tn) ∈ Bn .
Then every ray α|[0,tn] can be extended to a geodesic ray αn which does not leave the block Bn . Then αn → α. �

Given a space Y , we call a map φ : IX → Y an irrational map if it satisfies the property that φ(a) = φ(b) iff whenever α
and β are geodesic rays going out to a and b respectively, then Itinα and Itinβ eventually coincide. The obvious candidate
for such a map is the function φ : IX → ∂N which takes a to the boundary point in ∂N determined by the itinerary of a
ray going out to a. This function is well defined by Corollary 3.5(3). All we need to know is that φ is continuous, which
amounts to proving the following lemma:

Lemma 3.7. Let (αn) be a sequence of irrational rays with common basepoint converging to another irrational ray α. Then for every
B ∈ Itinα, we have B ∈ Itinαn for large enough n.

Proof. Write Itinα = [B1, B2, . . .], and choose k � 1. Then Bk+1 is a neighborhood of α(t) for some time t , which means
that for large enough n, αn(t) ∈ Bk+1. Since αn|[0,t] begins in B1 and ends in Bk+1, Lemma 3.3(1) tells us that it must
enter Bk . �
Corollary 3.8. The natural map φ : IX → ∂N determined by itineraries is an irrational map.

4. Some local homology calculations

We will use singular homology, with [7, pp. 108–130] as our reference. Here are a couple of key technical lemmas. All
homology will be computed using Z coefficients. Recall that saying that π is a local path component of a point x in a space
X means that there is an open neighborhood U of x such that π is the path component of U containing x.

Lemma 4.1. Local homology can be computed using local path components. That is, for a point x in a topological space X with local
path component π , we have

H∗(X, X − x) = H∗(π,π − x).



1172 C. Mooney / Topology and its Applications 157 (2010) 1168–1181
Fig. 1. Y .

Proof. Let U be an open neighborhood of x which has π as the path component containing x. Using excision, we get

H∗(X, X − x) = H∗(U , U − x).

Now, since the image of a singular simplex σ is path connected, the chain complex C∗(U ) splits as C∗(U − π) ⊕ C∗(π).
Passing to the relative chain complex C∗(U , U − x) kills off the entire first factor. Thus C∗(U , U − x) = C∗(π,π − x) and
H∗(U , U − x) = H∗(π,π − x). �
Lemma 4.2. Let X be a path connected space, x0 ∈ X, and B be the open n-ball with z0 ∈ B. Then the local homology H∗(B × X,

B × X − (z0, x0)) is zero whenever ∗ < n. When ∗ = n, it is nonzero only when X is a single point, in which case it is Z.

Proof. The statement is obvious in the case where X = {x0}. If X �= {x0}, then H0(X, X − x0) = 0. H∗(B, B − z0) is Z when
∗ = n and 0 everywhere else. So the relative Künneth formula gives an isomorphism

H∗
(

B × X, B × X − (z0, x0)
) =

∗⊕
i=0

Hi(B, B − z0) ⊗ H∗−i(X, X − x0) = 0. �

5. Hyperblocks

For positive integers m and n and an infinite CAT(0) group Γ , define

G0 = (
Γ × Z

m) ∗Zm
(
Z

m × Z
n) = Z

m × (
Γ ∗ Z

n),
and choose a geometric action of Z

m ×Z
n on E0 = R

m ×R
n (by translations). We will denote the convex hull of the Z

m-orbit
of the origin by Em− and the convex hull of the Z

n-orbit of the origin by En+ (these are just isometric copies of R
m and R

n).
The minimal angle θ between geodesics in the two subspaces is called the skew, which can be any number 0 < θ � π/2.
The quotient of E0 by the group action is an m + n torus T0 with m- and n-tori T m− = Em−/Z

m and T n+ = En+/Z
n; we call

these the left- and right-hand subtori of T0.
Choose a CAT(0) space K on which Γ acts geometrically. In order to simplify matters, we will temporarily assume that

the action is free so that K = K/Γ is a K (Γ,1). Choose a point x ∈ K and glue T m− × K to T0 via the isometry T m− ×{x} → T m− .
The resulting space is nonpositively curved [4, Proposition II.11.6(2)] and is a K (G0,1); we denote it by Y = Y (Γ,m,n) (see
Fig. 1). Its universal cover Y is a CAT(0) G0-space, which we call a hyperblock. Path components of p−1(T0) are called walls;
these are isometric copies of E0. The names hyperblock and wall are given because these spaces will play the role in this
paper that “blocks” and “walls” play in [5].

5.1. The hedge

Lemma 5.1. Y splits as a product Em− × H where H comes with a natural block structure in the sense of Section 3. In this block structure,
left blocks are isometric copies of K and right blocks are isometric copies of R

n. The intersection of two blocks is at most a single point.

Proof. In the same way as in [5], Y comes with a natural block structure in which left blocks are path components of
p−1(T m− × K ) and right blocks are path components of p−1(T0). We begin with a left block B0 and an isometry

φ0 : Em− × K → B0

which comes naturally from the splitting of the downstairs space. Let B1 denote the collection of right blocks which inter-
sect B0. For each B ∈ B1, we have

B ∩ B0 = φ0
(

Em− × xB
)

for some point xB ∈ K . Now (Em−)⊥ is the vector subspace of E orthogonal to Em− . There is also an isometry
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φB
1 : Em− × (

Em−
)⊥ → B

such that

B ∩ B0 = φB
1

(
Em− × yB

)
for some yB ∈ (Em−)⊥ . We choose this isometry so that for every z ∈ Em− ,

φB
1 (z, yB) = φ0(z, xB).

Define LB = φB
1 ((Em−)⊥), y′

B = φB
1 (yB),

D1 = B0 ∪
⋃

B1,

and

H1 = K ∪
⋃

B∈B1

LB/ ∼

where ∼ is generated by the rule xB ∼ y′
B . Then we can extend φ0 to an isometry

φ1 : Em− × H1 → D1

by letting φ1(z, x) = φB
1 (z, x) whenever x ∈ LB .

Now, let B2 be the collection of left blocks intersecting D1. As before, every B ∈ B2 intersects D1 at a subspace of the
form φ1(Em− × xB) for some point xB ∈ H1 and any natural isometry Em− × K → B has the property that the intersection
B ∩ D1 is the image of Em− × yB for some yB ∈ K . Denote the image of 0 × K under this map by LB and the image of (0, yB)

by y′
B . Let

D2 = D1 ∪
⋃

B2

and

H2 = H1 ∪
⋃

B∈B2

LB/ ∼

where ∼ is generated by the rule xB ∼ y′
B for B ∈ B2. In the same was above, φ1 can be extended to an isometry

φ2 : Em− × H2 → D2.

Continue in this manner to get for every n an isometry φn : Em− × Hn → Dn where Hn has the desired block structure. �
It is now easy to see that we can remove the assumption that the action of Γ is free. We have an action of Z

m on Em−
which comes from the action on E0. Take the action of Γ × Z

m on K × Em− to be the corresponding product action and
use the proof of the previous lemma as prescription for construction Y by gluing copies of K × Em− to copies of E0 along
equivariant collections of m-flats.

Note that this splitting corresponds directly to the group splitting G0 = Z
m × [Γ ∗ Z

n] where Z
m acts only in the Em−-

coordinate. Then the projected action of Γ ∗ Z
n on H is a geometric action and the stabilizer of a block of H is a subgroup

conjugate to either Γ or Z
n . A good example to keep in mind at this point is G0 = Z × [Z ∗ Z] (as in the Croke–Kleiner

group). In this case Y = R × H where H is the infinite 4-valent tree.
From the splitting Y = Em− × H , we get that ∂Y is the join ∂ Em− ∗ ∂ H . We call the points of ∂ Em− poles of Y . The set of

poles, which we denote P Y , is an (m − 1)-sphere. We call H a hedge and the blocks described in Lemma 5.1 of the hedge
leaves. Those leaves L for which the space Em− × L is a wall (a path component of p−1(T0)) are called right leaves (these are
isometric copies of R

n). The other leaves are called left leaves (these are isometric copies of K ). The points of intersection
of leaves are called gluing points. Since the set of gluing points in a leaf is the orbit of a single one by a geometric action
(of either Z

n or Γ ), this set is discrete and quasi-dense in the leaf. With this block structure in hand, we can talk about
itineraries of geodesics and geodesic rays in the hedge in terms of leaves. We will denote the itinerary of a geodesic α in H
by ItinH α. The set of irrational points of ∂ H will be denoted by I H and the set of rational points by R H . Geodesics in the
hedge are easy to compute: If ItinH [x, y] = [L1, . . . , Ln] and yi = Li ∩ Li+1 for 1 � i < n, then

[x, y] = [x, y1] ∪ [y1, y2] ∪ · · · ∪ [yn−1, y]
where each of these segments is taken in a leaf.

Given a CAT(0) space X with points p, x, y ∈ X , the Alexandrov angle between the geodesics [p, x] and [p, y] is defined to
be the angle between the initial velocities of these geodesics; this number is denoted by � p(x, y). If α and β are geodesic
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segments [rays] based at p, then we may denote the Alexandrov angle between them by � p(α,β). If α and β are rays with
endpoints ζ and η ∈ ∂ X , then we may also write � p(ζ,η) = � p(α,β). Given ζ,η ∈ ∂ X , the Tits angle between ζ and η is
defined to be

� Tits(ζ,η) = sup
p∈X

� p(ζ,η).

In [4, Corollary 9.9], it is shown that for geodesic rays α and β ,

� Tits
(
α(∞),β(∞)

) = � p(α,β)

iff α and β bound a flat sector (or their union is a geodesic line, in which case this angle is π/2). For closed subspaces C
and D of ∂ X , we may also write

� Tits(C, D) = min
{� Tits(ζ,η)

∣∣ ζ ∈ C, η ∈ D
}
.

In the context of this section, we will let

q : P Y × ∂ H × [0,π/2] → ∂Y

denote the natural quotient map where q(η, ζ,0) = η and q(η, ζ,π/2) = ζ . That is, ∂ H disappears at level 0 and P Y
disappears at level π/2, and t is the Tits angle between q(η, ζ,0) and q(η, ζ, t).

Lemma 5.2. Consider the induced actions of G0 on ∂Y and Γ ∗ Z
n on ∂ H. For g ∈ G0 , and q(η, ζ, t) ∈ ∂Y , we have

gq(η, ζ, t) = q(η, g2ζ, t)

where g2 is the image of g under the isomorphism G0/Z
m → Γ ∗ Z

n.

Proof. Given a point p = (p1, p2) ∈ Y = Em− × H and points η ∈ P Y and ζ ∈ ∂ H , let α and β be geodesic rays based at p
going out to η and ζ respectively. Then we can write α(t) = (α1(t), p2) and β(t) = (p1, β2(t)) where α1 is a ray in Em− and
β2 is a ray in H . Because Y = Min Z

m , every g ∈ G0 can be written coordinate-wise as (g E , g H ) where g E is a translation of
Em− and g H is an isometry of H . Of course, since g1 acts only in the Em−-coordinate of Y , g H = g H

2 . Using this, we compute

d
(

gα(t),α(t)
) =

√
dEm−

(
g Eα1(t),α1(t)

)2 + dH
(

g H p2, p2
)2

=
√

dEm−
(

g E p1, p1
)2 + dH

(
g H p2, p2

)2

= d(gp, p),

which means that gη = η, and

d
(

gβ(t), g2β(t)
) =

√
dEm−

(
g E p1, p1

)2 + dH
(

g Hβ2(t), g H
2 β2(t)

)2

= dEm−
(

g E p1, p1
)
,

which means that gζ = g2ζ . Since g takes the flat quadrant α[0,∞) × β[0,∞) to the flat quadrant gα[0,∞) × gβ[0,∞),
the lemma follows. �

When g ∈ Γ ∗ Z
n , we will simply write the equation in this lemma as

gq(η, ζ, t) = q(η, gζ, t),

since there is no confusion.

Lemma 5.3. I H is dense in ∂ H.

Proof. We begin by proving the following claim.

Claim. For distinct points x, y1 ∈ H such that y1 is a gluing point, the geodesic [x, y1] can be extended to an irrational ray.
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Let L1 be the leaf which intersects the geodesic [x, y1] only at the point y1. Since the set of gluing points in L1 is quasi-
dense (and Γ is infinite), we can choose another gluing point y2 ∈ L1 − y1, say y2 = L1 ∩ L2. Then [x, y2] = [x, y1]∪ [y1, y2].
Get another gluing point y3 ∈ L2 − y2, say y3 = L2 ∩ L3, so that

[x, y3] = [x, y1] ∪ [y1, y2] ∪ [y2, y3].
Continue in this manner, always extending the geodesic into a new leaf to get an irrational ray. This proves the
claim.

Now, let α be any rational ray in H based at a point x, where L is the last leaf α enters. Get a sequence zn of gluing
points in L converging to α(∞) in L ∪ ∂L. By the claim, we can extend every geodesic [x, zn] to an irrational ray αn . Then
αn → α. �

It turns out that R H is also dense in ∂ H . In fact, something much stronger is true:

Lemma 5.4. Let L be either the collection of left leaves or right leaves and S = {ζL}L∈L be a subset of ∂ H obtained by choosing for
each L ∈ L a point ζL ∈ ∂L. Then S is dense in ∂ H.

Proof. We show that every irrational point is a limit point of S . Choose any irrational ray α based at a non-gluing point
x ∈ L1 with infinite itinerary [L1, L2, . . .]. For each i, denote the gluing point Li ∩ Li+1 by yi . Then either all the even leaves
or all the odd leaves are from L; we’ll assume it’s the evens. Let αi be the geodesic ray based at x which goes out to ζL2i .
Then since each αi eventually stays in L2i , it agrees with α along the segment [x, y2i−1], and αi → α. �
Lemma 5.5. If two geodesic rays in a hedge have different itineraries, then they lie in different path components of ∂ H.

Proof. It suffices to prove the following claim.

Claim. Choose a basepoint p ∈ H (not a gluing point), and let L be a leaf not containing p. Let Ω be the collection of geodesic rays that
have L in their itineraries, and Ω(∞) ⊂ ∂ H be the set of endpoints of rays from Ω . Then Ω(∞) is both open and closed.

Let y be the gluing point at which every ray in Ω enters L, and get ε > 0 so that the open ε-ball Bε(y) in L based at
y contains no other gluing points. Then Ω(∞) is open because Ω is the collection of rays passing through the open space
Bε(y) ∩ L − y. It is closed, since whenever (αn) is a sequence of rays in Ω converging to a ray α, the sequence of points
where αn intersects the closed space ∂ Bε(y) ∩ L converges to a point on ∂ Bε(y) ∩ L, showing that α also enters L. �
Corollary 5.6.

(1) Every irrational point is a path component of ∂ H.
(2) ∂ H is nowhere locally path connected.
(3) ∂Y is locally path connected precisely at its poles.

For ζ ∈ ∂ H , we define the longitude of Y at ζ to be the subspace

l(ζ ) := P Y ∗ ζ

of ∂Y . Since P Y is an (m − 1)-sphere, l(ζ ) is an m-ball. Γ ∗ Z
n permutes right leaves transitively and for every right leaf L

of H , the wall W L = Em− × L is stabilized by the conjugate subgroup

G L = [
Z

m × Z
n]

gL
= gL

[
Z

m × Z
n]g−1

L

for some element gL ∈ Γ ∗ Z
n . The limit set of [Zn]gL (that is, the set of limit points in ∂W L of the orbit of a single point

in W L ) will be denoted by SL ; this is an (n − 1)-sphere. Note that since the action of G L on W L comes from the original
action of Z

n × Z
m on E , we have

� Tits(P Y , SL) = θ,

where θ is the skew. Consider the subset

ΠY =
⋃

right leaves L

SL .

Later we will see that ΠY is the collection of poles of hyperblocks which intersect Y at a wall.
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Lemma 5.7. Γ ∗ Z
n permutes the spheres of ΠY transitively.

Proof. This follows from the fact that Γ ∗ Z
n permutes right leaves transitively and the equation

lim
[
Z

n]
gL

= gL lim Z
n. �

The topological object which we will use to distinguish between boundaries is called the watermark W (Y ). It is defined
as follows: let L0 be the right leaf which is stabilized by Z

n . Then W (Y ) is the image of SL0 under the map ∂W L0 → l(ζ0)

which is given by the rule

q(η, ζ, t) �→ q(η, ζ0, t)

for some (any) fixed ζ0 ∈ ∂ H . The following lemma guarantees that this is well defined.

Lemma 5.8. For every ζ0 ∈ ∂ H, l(ζ0) ∩ ΠY ≈ W (Y ).

Proof. We begin with the forward inclusion; assume we have been given ν ∈ l(ζ0) ∩ ΠY , say

ν = q(η, ζ0, λ).

Then there is a sequence (νn) ⊂ ΠY converging to ν , say νn = q(ηn, ζn, λn). For each n, let SLn be the sphere of ΠY con-
taining νn . By Lemma 5.7, we can get a sequence (gn) ⊂ Γ ∗ Z

n for which gnνn ∈ SL0 for all n. By passing to a subsequence,
we may assume that gnνn → ν ′ ∈ SL0 . Write ν ′ = q(η′, ζ ′, λ′). Using Lemma 5.2, we have gnνn = q(ηn, gnζn, λn). If λ < π/2,
then we must have ηn → η and η′ = η. If λ = π/2, then we have q(η′, ζ ′, λ) = q(η, ζ ′, λ). Either way,

ν ′ = lim
n→∞ gnνn

= q
(
η, ζ ′, λ

)
,

showing that q(η, ζ ′, λ) ∈ SL0 and ν ∈ ψ(SL0 ).
For the reverse inclusion, assume we have ν = q(η, ζ ′, λ) ∈ SL0 . By Lemma 5.4, the Γ ∗ Z

n-orbit of ζ ′ is dense in ∂ H ,
which means that we can get a sequence (gn) ⊂ Γ ∗ Z

n such that gnζ ′ → ζ0. This done, we have

lim
n→∞ gnν = lim

n→∞ q
(
η, gnζ

′, λ
)

= q(η, ζ0, λ),

showing that q(η, ζ0, λ) ∈ ΠY , as desired. �
In the original Croke–Kleiner construction, the watermark of every block is exactly two points if the skew is less than

π/2 and one point if the skew is precisely π/2. The appropriate analogue in this setting is the following.

Proposition 5.9. The watermark of Y contains exactly one point iff the skew is π/2.

5.2. Local homology of ∂Y

Given a topological space A, we let CA denote the cone on A. We will also denote by Co A the “open cone” on A; that is,

Co A = CA − A.

Lemma 5.10. Let ζ be a pole of Y . Then Hk(∂Y , ∂Y − ζ ) is zero when k < m and uncountably generated when k = m.

Proof. Get an open neighborhood V ⊂ P Y of ζ which is homeomorphic to the open (m − 1)-ball and consider

U = q
(

V × ∂ H × [0,π/2)
)
.

This is an open neighborhood of ζ homeomorphic to

(B ∗ ∂ H) − ∂ H ≈ Co∂ H × B



C. Mooney / Topology and its Applications 157 (2010) 1168–1181 1177
Fig. 2. A deformation retraction.

where B is the open (m − 1)-ball. Assume k > 1 and look at the long exact sequence for the pair (U , U − ζ ). Since U is
contractible, Hk(U ) = Hk−1(U ) = 0 and we get

Hk(U , U − ζ ) = Hk−1(U − ζ ).

Now,

U − ζ
HE� C∂ H × B − (p, x)

where p is the cone point of C∂ H and x ∈ B . This last deformation retracts onto the subspace

(C∂ H × ∂ B) ∪ (∂ H × B) ≈ ∂ H ∗ Sm−2

= Σm−1∂ H

(see Fig. 2). So

Hk(U , U − ζ ) = Hk−1
(
Σm−1∂ H

)
= H̃k−1

(
Σm−1∂ H

)
= H̃0

(
Σm−k∂ H

)
= 0

where H̃∗ denotes reduced homology. Now consider what happens to the long exact sequence for the pair (U , U − ζ ) when
k = 0,1:

→ H1(U ) → H1(U , U − ζ ) → H0(U − ζ ) → H0(U ) → H0(U , U − ζ ) → 0.

Because U is path connected, we have H1(U ) = H0(U , U − ζ ) = 0 and H0(U ) = Z. So we are left with the short exact
sequence

0 → H1(U , U − ζ ) → H0
(
Σm−1∂ H

) → Z → 0.

If m > 1, then H0(Σ
m−1∂ H) = Z and H1(U , U − ζ ) = 0. If m = 1, then H0(Σ

m−1∂ H) = H0(∂ H) is uncountably generated
and H1(U , U − ζ ) is also uncountably generated. �
Lemma 5.11. Let ζ ∈ ∂Y − P Y . Then Hk(∂Y , ∂Y − ζ ) is finitely generated for k � m.

Proof. We begin by finding a local path component of ζ which is homeomorphic to B × V ζ where B is the open m-ball
and V ζ is a local path component in ∂ H . If ζ /∈ ∂ H , then this is easy, since q is a homeomorphism on P Y × ∂ H × (0,π/2).
If ζ ∈ ∂ H , then we can get an open neighborhood of ζ of the form

U = q
(

P Y × V × (0,π/2])
where V is an open neighborhood of ζ in ∂ H . Then

U ≈ Co P Y × V ≈ B × V ,

and the path component of ζ in U has the form B × V ζ where V ζ is the path component of ζ in V . Therefore

Hk(∂Y , ∂Y − ζ ) = Hk(B × V ζ , B × V ζ − ζ ).

The conclusion now follows from Lemma 4.2. �
Corollary 5.12. The local homology Hk(∂Y , ∂Y −ζ ) at a point ζ ∈ ∂Y is finitely generated for k < m. For k = m, it’s infinitely generated
iff ζ is a pole.
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Fig. 3. X .

6. The generalized Croke–Kleiner construction

Let Γ− and Γ+ be infinite CAT(0) groups and m � n be positive integers, and define

G = (
Γ− × Z

m) ∗Zm
(
Z

m × Z
n) ∗Zn

(
Z

n × Γ+
)
.

Choose T0(m,n) = E/Z
m × Z

n with skew θ and form the spaces K − = K (Γ−), Y − = Y (Γ−,m,n). We also form Y + =
Y (Γ+,n,m) where we use the same torus T0 but with “left” and “right” swapped (this corresponds to a change of coordi-
nates in K ) so that Y − ∩ Y + = T0. We define X = Y − ∪ Y + (see Fig. 3).

The universal cover X of X is a CAT(0) G-space. We denote the universal covering projection by p and call X a generalized
Croke–Kleiner construction for G from the spaces T0 , K− , and K+ . The path components of p−1(T0) are isometric copies of E;
we call these walls. The path components of p−1(Y−) and p−1(Y+) are hyperblocks; we call them left and right blocks
respectively, and denote them by B− and B+ if we wish to designate parity. The following lemmas are easy.

Lemma 6.1. If a wall intersects a block, then that wall is contained in that block.

Lemma 6.2. If two blocks intersect, then they have opposite parity and their intersection is precisely a wall.

Lemma 6.3. Every block B splits as a product E × H where E is a Euclidean space and H is a hedge.

In this last lemma, E and H are of two types depending on the parity of B . If B is a left block, then E is an isometric
copy of Em− and H is a hedge whose leaves are copies of K− and Em− . If B is a right block, then E is a copy of En+ and the
leaves of H are copies of K+ and En+ . We call H the hedge factor of B .

6.1. The block structure

To see that the collection of hyperblocks satisfies Definition 3.1, we need only the following.

Lemma 6.4. There is an ε > 0 such that two blocks intersect iff their ε-neighborhoods intersect.

Proof. Take ε > 0 to be smaller than half the lengths of the shortest nontrivial loops in K − and K + . Suppose B1 and B2
are disjoint blocks, and let γ be a geodesic starting in B1 and ending in B2. Without loss of generality, assume B1 is a left
block. Then γ ′ = pγ is a local geodesic in X which leaves Y − at a point γ ′(t0) ∈ T n+ . If γ ′|(t0,1] stays in K + × T n+ − T n+ , then
B2 intersects B1 at γ (t0). So γ ′|[t0,1] reenters Y − , at another point γ ′(t1) ∈ T n+ . Then γ ′|(t0,t1) ⊂ K + × T n+ and its projection
onto the K+-coordinate is a nontrivial loop in K + . Since projections do not increase distance, it follows that the length of
γ is also at least 2ε , guaranteeing that d(B1, B2) � ε . �

As a corollary, we get

Theorem A′ . The nerve N of blocks is a tree.

The following is also clear.

Lemma 6.5. Given a block B, ΠB, as defined in the previous section, is precisely the set of poles of blocks neighboring B.

Theorem B′ . Let B0 and B1 be blocks, and D be the distance between the corresponding vertices in N. Then:

(1) If D = 1, then ∂ B0 ∩ ∂ B1 = ∂W where W is the wall B0 ∩ B1 .
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(2) If D = 2, then ∂ B0 ∩ ∂ B1 = PB1/2 where B1/2 intersects B0 and B1 .
(3) If D > 2, then ∂ B0 ∩ ∂ B1 = ∅.

Proof. (1) If D = 1, then B0 ∩ B1 is a wall W . That ∂W ⊂ ∂ B0 ∩ ∂ B1 is obvious. To see the reverse inclusion, suppose we
have asymptotic geodesic rays α0 ⊂ B0 and α1 ⊂ B1. Every geodesic from α0 to α1 intersects the wall W (Lemma 3.3). Thus
we can get a sequence of points in W which remain asymptotic to α0 and α1.

(2) If D = 2, then there is one vertex between v B0 and v B1 ; call it v B1/2 . We will show that

PB1/2 ⊂ ∂ B0 ∩ ∂ B1 ⊂ ∂W0 ∩ ∂W1 ⊂ PB1/2

where W i = B1/2 ∩ Bi for i = 0,1. The first inclusion follows naturally from the fact that geodesic rays in B1/2 which go
to poles are precisely those whose projections onto the hedge coordinate of B1/2 are constant, and can be therefore be
constructed easily in W0 and W1. The second inclusion follows by the same argument as in (1). For the third inclusion,
suppose α0 ⊂ W0 and α1 ⊂ W1 are asymptotic geodesic rays, and let α0 and α1 be their projections onto the hedge
coordinate of B1/2. Let L0 and L1 be the leaves containing the images of these two maps. Since L0 and L1 are disjoint, every
geodesic from α0 to α1 leaves L0 at the same gluing point and enters L1 at the same gluing point. Hence, the only way for
α0 and α1 to be asymptotic is if α0 and α1 are both constant. Therefore α0 and α1 go to a pole of B1/2.

Finally, we show (3) by contradiction: Suppose ζ ∈ ∂ B0 ∩ ∂ B1, and write Itin[B0, B1] = [B1, . . . , Bn] where n = D + 1 by
hypothesis. By the same argument as in (1), we actually have that ζ ∈ ∂ Bi for every 1 � i � n. By (2), then, it follows that
ζ ∈ PBi for every 1 < i < n. But PB2 ∩ PB3 = ∅, because � Tits(PB2,PB3) = θ , giving us a contradiction! �
6.2. Poles and n-vertices

In [5], a boundary point ζ is called a vertex if it has a local path component π and a homeomorphism from π to the
open cone on the cantor set taking ζ to the cone point. An appropriate analogue in this context is the following: A point
ζ ∈ ∂ X is called a vertex if the local homology of ∂ X at ζ is uncountably generated in some dimension. If n is the smallest
dimension in which this local homology is uncountably generated, then we say that ζ is an n-vertex. The goal of this section
is to distinguish topologically which vertices in RX are poles. A key tool is the following:

Theorem C′ . Let B be a block and ζ ∈ ∂ B not be a pole of any neighboring block. Then ζ has a local path component which stays in ∂ B.

The proof of this theorem is the same as the proof of Theorem C [5, Lemma 4] with the following observation. The
topological frontier of a left block is a subcollection of path components of p−1(T n+), and the topological frontier of a right
block is a subcollection of path components of p−1(T m−); these path components are isometric copies of En+ and Em− and are
the appropriate replacements for the “singular geodesics” given the original proof.

Recall that 1 � m � n.

Lemma 6.6.

(1) If m = n, then m-vertices in RX are poles.
(2) If m < n, then m-vertices in RX are poles of left blocks.
(3) If m < n, then n-vertices in right block boundaries are poles of right blocks.

Proof. Choose any ζ ∈ RX. Recall that in Section 3, we showed that the collection of rational points RX of ∂ X is the same
as the union of block boundaries. So there is a block B such that ζ ∈ ∂ B − ΠB. If B is a left block, then let k = m, and if B
is a right block, let k = n. Applying Theorem C′ , Lemma 4.1, and Corollary 5.12, we know that ζ is a k-vertex iff ζ is a pole
(of B). �

Now, it is conceivable in the case where m < n that some n-vertices in left block boundaries are not poles. Here is the
last resort for dealing with this situation.

Lemma 6.7. Assume m < n and let π be a path component in the set of n-vertices in RX. Then:

(1) If π is compact, then every point of π is a pole.
(2) If π is not compact, then no point of π is a pole.

Proof. We begin by proving that if one point of π is a pole, then every other point of π is a pole as well: Suppose
α : [0,1] → π is a path such that α(0) is a pole and α(1) is not. Since the collection of poles is closed, we may write

t = max
{

0 � t � 1
∣∣ α(t) is a pole

};
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say α(t) ∈ PB+ . By Theorem C′ , there is an s ∈ (t,1) so that α(t, s) ⊂ ∂ B+ and contains no n-vertices, giving us a contradic-
tion.

We now prove (1) and (2) by contrapositive; if π contains all poles, then π is a sphere, giving us (2). For (1), assume π
contains no poles; then

π ⊂ ∂ B − PB

= PB ∗ ∂ H(B) − PB

≈ ∂ H × Bm

where B is a left block, Bm is the open m-ball, and H is the hedge factor of B . If (ζ, z) ∈ π , then since every other point of
{ζ } × Bm has a local path component homeomorphic to that of (ζ, z), we know that in fact {ζ } × Bm ⊂ π . But the frontier
of {ζ } × Bm in ∂ B is PB, which is disjoint from π . This proves (1). �
6.3. Safe path components

In their original work, Croke and Kleiner did not prove that RX was a path component. However, in order for a path
starting in RX to leave it, it has to pass through infinitely many block boundaries on its way out. The same is true here. In
this section, we define a safe path to be a path α(t) in ∂ X which passes through m-vertices for only finitely many times t .
Recall that under our assumption that m � n, it follows from Corollary 5.12 that m-vertices are poles. If m < n, then these
are poles of left blocks.

Theorem D′ . RX is the unique dense safe path component of ∂ X.

Proof. We begin by showing that RX is safe path connected; choose ζ,η ∈ RX, say ζ ∈ ∂ B0 and η ∈ ∂ B ′
0. We will construct

a safe path between ζ and η in RX by induction on the length of Itin[B0, B ′
0] = [B1, . . . , Bn]. Assume n = 1 (that is, that

B0 = B ′
0), and let [ζP , ζH ] and [ηP , ηH ] be join arcs of ∂ B0 = PB0 ∗ ∂ H0 containing ζ and η. Note that each of these join

arcs contains at most two poles, one of which is a pole of B0. For, if one contained two poles of a neighboring block, then
we would not have Em− ∩ En+ = {0}. Take α to be the path from ζ to η

[ζ, ζP ] ∪ [ζP , ηH ] ∪ [ηH , η].
Then α passes through only finitely many left poles, and hence is safe. In general, if n > 1, then choose a point ζ ′ ∈
∂ Bn−1 ∩ ∂ Bn and concatenate a safe path from ζ to ζ ′ in ∂ B1 ∪ · · · ∪ ∂ Bn−1 to a safe path from ζ ′ to η in ∂ Bn .

So RX is safe path connected. The next step is to show that RX is a safe path component. We do this by contradiction:
Suppose we have a safe path α which starts in RX but ends outside. Set t = inf{t | α(t) /∈ RX}. If α(t) ∈ RX, then α(t) ∈ ∂ B
for some block B and α(t, t + ε) ⊂ ∂ B for some small ε > 0. So α(t) /∈ RX, but α[0, t) ⊂ RX. Let s be the last time at which
α passes through an m-vertex, say α(s) ∈ PB. Then for some small ε > 0, α(s, s + ε) is contained in a path component of
∂ B − PB of the form (PB ∗ V ) − PB where V is a path component of the boundary of the hedge factor of B . If α(s, s + ε)

not contained in the boundary of a wall, then α(s, t) ⊂ ∂ B . But α|(s,t) cannot stay inside ∂ B for any B, for if it did, then
α(t) ∈ ∂ B as well, since block boundaries are closed! So α(s, s + ε) ⊂ ∂W for some wall W = B ∩ B+ , and α|(s,t) enters
∂ B+ . Since this path must also leave ∂ B+ , it must pass through another pole, giving us a contradiction.

Finally, RX is dense by Lemma 3.6 and no other safe path component of ∂ X can be dense, since the irrational map
provided in Section 3 takes components of IX to points of the Cantor set. �
7. The proof of Theorem 1

The watermark of X is defined to be the unordered pair {W (Y−), W (Y+)}. Let X1 and X2 be two generalized Croke–
Kleiner constructions for G from the same spaces and suppose φ : ∂ X1 → ∂ X2 is a homeomorphism. By Proposition 5.9,
there are at least two possible watermarks. Therefore Theorem 1 will follow from the following proposition.

Proposition 7.1. X1 and X2 have the homeomorphic watermarks.

The following are immediate from Theorem D′ , Corollary 5.12, and Lemma 6.7.

Lemma 7.2. φ(RX1) = RX2 .

Lemma 7.3. φ takes poles to poles.

Lemma 7.4. Let B1 be a block of X1 . Then there is a block B2 of X2 such that:
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(1) φ(PB1) = PB2 .
(2) φ(ΠB1) = ΠB2 .
(3) φ(∂ B1) = ∂ B2 .

Proof. Choose ζ ∈ PB1 and let B2 be such that φ(ζ ) ∈ PB2. If the dimension of PB1 (or PB2) is at least 1, then PB1 is
connected and since φ takes poles to poles, we get that φ(PB1) = PB2. Assume PB1 (and PB2) both have dimension zero.
Then they both consist of exactly two points and write PB2 = {ζ,η}. Choose ζ ∈ ∂ H(B1) such that {ζ } is a path component
of ∂ H(B1) and let α : [0,1] → l(ζ ) parameterize the longitude in such a way that α(0) = ζ to α(1) = η. If φ(η) is not a
pole of B2, then it must be a pole of a neighboring block and RX2 − φ(PB1) has two path components: φ(α(0,1)) and
RX2 −φ(α[0,1]). But RX1 − PB1 has an infinite number of path components, which gives us a contradiction. This shows that
φ(PB1) = PB2.

We get that φ(ΠB1) = ΠB2 and φ(∂ B1) = ∂ B2 by the following argument: If α : [0,1] → RX1 is a path such that α(0) ∈
PB1, α(1) is a pole, and α(0,1) contains no poles, then α ⊂ ∂ B1 and α(1) is either a pole of B1 or a pole of a neighboring
block. �
Lemma 7.5. Let B1 be a block of X1 and B2 be a block of X2 such that φ(PB1) = PB2 . If we have ζ1 ∈ ∂ H(B1) such that {ζ1} is a path
component of ∂ H(B1), then there is a ζ2 ∈ ∂ H(B2) such that φ(l(ζ1)) = l(ζ2).

Proof. Whenever {ζi} is a path component of the boundary of the hedge factor of Bi , then the longitude l(ζi) is a ball in
∂ Bi whose frontier is precisely PBi and whose interior is a path component of ∂ Bi − PBi . �

Combining these lemmas, we get Proposition 7.1.
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